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Systematic trait dissection in oilseed rape 
provides a comprehensive view, further insight, 
and exact roadmap for yield determination
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Abstract 

Background:  Yield is the most important and complex trait that is influenced by numerous relevant traits with very 
complicated interrelations. While there are a large number of studies on the phenotypic relationship and genetic 
basis of yield traits, systematic studies with further dissection focusing on yield are limited. Therefore, there is still lack 
of a comprehensive and in-depth understanding of the determination of yield.

Results:  In this study, yield was systematically dissected at the phenotypic, genetic to molecular levels in oilseed rape 
(Brassica napus L.). The analysis of correlation, network, and principal component for 21 traits in BnaZN-RIL population 
showed that yield was determined by a complex trait network with key contributors. The analysis of the constructed 
high-density single nucleotide polymorphism (SNP) linkage map revealed the concentrated distribution of distorted 
and heterozygous markers, likely due to selection on genes controlling the growth period and yield heterosis. A total 
of 134 consensus quantitative trait loci (QTL) were identified for 21 traits, of which all were incorporated into an inter‑
connecting QTL network with dozens of hub-QTL. Four representative hub-QTL were further dissected to the target 
or candidate genes that governed the causal relationships between the relevant traits.

Conclusions:  The highly consistent results at the phenotypic, genetic, and molecular dissecting demonstrated that 
yield was determined by a multilayer composite network that involved numerous traits and genes showing complex 
up/down-stream and positive/negative regulation. This provides a systematic view, further insight, and exact road‑
map for yield determination, which represents a significant advance toward the understanding and dissection of 
complex traits.

Keywords:  Brassica napus, Yield determination, Segregation distortion, Residual heterozygosity, Trait-QTL network, 
Positive or negative pleiotropy, Target or candidate genes, Trade-off
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Background
Yield, which usually refers to biomass or seed yield, is the 
most important trait of crops, such as wheat, rice, maize, 
soybean, peanut, cotton, and oilseed rape [1]. For exam-
ple, crop straw can be used to generate heat and elec-
tricity [2]. The grains of cereal crops (including wheat, 
rice, maize, etc.) are the main source of starch (the first 
nutrient for human), and can also be used to produce 
bioethanol [3]. The seeds of rapeseed, soybean, and other 
oil crops can be supplied for producing edible oil and 
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biodiesel [4]. With the rapid increase in the global popu-
lation, there is an urgent need to increase crop yield to 
meet the human demand for food and energy [5]. How-
ever, yield is also the most complex trait, as it is a com-
posite outcome of numerous contributing traits, as well 
as their interactions [6]. Specifically, yield is directly 
determined by its multiple components with a trade-
off effect between them, e.g., seed number and size [7]. 
This means that a change in one component for yield 
often causes a change in other components in an oppo-
site direction. The trade-off among yield components 
is generally explained by the competition among sinks 
(negative feedback) due to limited resources [8]. In addi-
tion, yield is indirectly affected by numerous yield-related 
traits in either a positive or negative direction through 
undetermined mechanisms [9]. These may include 
growth period (e.g., flowering and maturity time), plant 
architecture (e.g., plant height and branch number), and 
resistance to biotic (e.g., disease, pest, and weed) and 
abiotic (e.g., drought/water logging and hot/cold) stress. 
Therefore, characterizing the complex relationships 
between yield and its components or related traits is the 
key to understanding what and how yield is determined. 
This is important not only for the evolution and physi-
ology of plants [10, 11], but also for crop genetics and 
breeding [12].

Previous studies have revealed the phenotypic correla-
tion between yield and its components or related traits in 
various crops, such as rice [13], wheat [14], maize [15], 
soybean [16], peanut [17], and rapeseed [1]. Recently, a 
large number of studies have identified the underlying 
QTL for yield, and genome-wide QTL co-localization 

between yield and its components or related traits was 
found in crops, such as rice [18, 19], wheat [20], maize 
[15, 21, 22], soybean [16, 22, 23], cotton [24, 25], and 
rapeseed [9, 26]. However, the underlying genetic basis 
for phenotypic correlation and QTL clustering between 
yield traits is basically unclear. Theoretically, the pheno-
typic correlation and QTL colocalization between traits 
mechanistically result from either genetic linkage or plei-
otropy [27]. Genetic linkage means that the genes for dif-
ferent traits are physically close to each other (Fig. 1A). 
Pleiotropy refers to the effect of a locus on two or more 
traits (Fig.  1B). In addition, pleiotropy may be due to 
physiological interactions among traits in which one 
trait acts at “upstream” of another (Fig. 1C). Although a 
few of these QTL clusters for yield traits have been fur-
ther dissected to specific loci/genes [19, 28, 29], the exact 
relationship between the relevant traits has not been 
characterized.

In summary, although a large number of studies have 
reported the phenotypic relationship and genetic basis of 
yield traits, systematic research with further dissection 
focusing on yield is rarely performed. Therefore, there 
is still a lack of a comprehensive and in-depth under-
standing of the determination of yield. Oliseed rape is an 
important crop widely planted around the world for mul-
tiple purposes, including oil, fodder, and food [30]. With 
the successful application of catalysts in the production 
of biodiesel from vegetable oil [31], rapeseed also serves 
as a main biodiesel resource in Europe [32]. With the 
increasing demand for edible vegetable oil and biofuel, it 
is urgent to improve the seed yield of oilseed rape [33]. In 
the current study, taking oilseed rape as an example, yield 
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Fig. 1  Several putative models underlying the co-localization of QTL for two traits. The first and second models (A and B) are tightly linked and 
generally called pleiotropy, which are easily understood. The third (C) is physiological interaction: one gene can indirectly affect a trait by regulating 
another trait
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was systematically dissected at the phenotypic, genetic, 
and molecular levels, with an emphasis on its complex 
relationship with other contributing traits. In particu-
lar, four representative hub-QTL clusters were dissected 
to specific loci/genes, and the causal trait relationship 
was revealed for the first time. The phenotypic, genetic, 
and molecular dissecting results were highly consistent, 
which provided comprehensive and further insights into 
yield determination.

Results
Analysis of phenotypic relationships revealed 
an integrated trait network with key factors to determine 
yield
In the BnaZN-RIL population and its two parents that 
were planted in six environments, 21 yield-related traits 
were investigated. The two parents Zhongshuang11 and 
No.73290 showed significant differences for 19 out of 
the 21 investigated traits in at least one environment 
(Additional file 8: Table S1). The phenotypic values of the 
BnaZN-RIL population showed normal or near-normal 
distribution for all 21 traits across the six environments 
(Additional file 1: Figure S1). Analysis of variance showed 
that genotype, environment, and their interaction had 
significant effects on all 21 investigated traits (Additional 
file 9: Table S2).

Among the 210 trait pairs, 198 (94.3%) showed a sig-
nificant correlation in at least one environment and 158 
(75.2%) were significantly correlated in multiple environ-
ments (Additional file  2: Figure S2; Additional file  10: 
Table  S3). To obtain a general picture of the trait rela-
tionship, a trait network map was constructed using the 
correlation that was significant in more than half of the 
investigated environments (Fig.  2A), which displayed 
several obvious characteristics. First, all 21 investigated 
traits were woven into a complex network of intercon-
nections, and none was independent. Second, seed yield 
was located at the center of this network, followed by 
yield components, whereas other yield-related traits were 
on the periphery. Third, seed yield showed a higher cor-
relation with yield components than with other yield-
related traits. In addition, yield-related traits usually 
showed a higher correlation with yield components than 
with yield itself, suggesting their indirect relationship 
with seed yield.

Although the results of principal component analysis 
(PCA) in Wuhan and Zhengzhou showed a slight dif-
ference, high consistency was found between different 
years at the same location (Additional file 11: Table S4). 
Therefore, the best linear unbiased prediction (BLUP) 
value for six environments was subjected to PCA 
(Table  1; Fig.  2B–D). The first principal component 1 
(PC1) accounted for 24.2% of the trait variance. Among 

the seven traits (pod number of branch raceme (PNb), 
pod number of whole plant (PNw), seed yield of branch 
raceme (SYb), primary branch number (PBN), seed yield 
of whole plant (SYw), main inflorescence length (MIL), 
pod number of main raceme (PNm)) with negative load-
ing, PNb and PNw showed a high value, which suggested 
that seed yield was primarily determined by pod number. 
Of the other 14 traits with positive loading, five growth 
period traits (budding time (BuT), flowering time (FlT), 
flowering end time (FET), bolting time (BoT), maturity 
time (MaT)) had the highest value. The second principal 
component (PC2) accounted for 16.3% of the trait vari-
ance. Among the eight traits with negative loading, the 
seed yield of the main raceme (SYm), seed number per 
pod (SNPP), and seed oil content (OIL) showed the high-
est values, which indicated that seed yield was second-
arily determined by seed number per pod. Of the other 
13 traits with positive loading, PRO, FET, PNw, and PNb 
had a high value, which was in accordance with the sig-
nificant negative correlation between seed number per 
pod and pod number as well as between oil content and 
protein content (Additional file  2: Figure S2; Additional 
file  10: Table  S3). The third principal component (PC3) 
accounted for 15.0% of the total variance. Of the six traits 
with negative loading, thousand-seed weight (TSW), 
MIL, and PRO showed a high value, which was in accord-
ance with a positive correlation between seed weight and 
protein content in the current study (Additional file  2: 
Figure S2; Additional file  10: Table  S3) and previous 
research [34]. Of the other 15 traits with positive loading, 
SYw, SYb, PBN, and SNPP exhibited a high value, which 
was in accordance with the negative correlation between 
seed weight and seed number per pod, branch number, 
and seed yield (Additional file  2: Figure S2; Additional 
file 10: Table S3).

Analysis of a high‑density genetic map revealed 
a concentrated distribution of distorted segregation, 
residual heterozygosity, and variation in recombination 
frequency
To further dissect the genetic relationship between yield 
traits, a high-density genetic linkage map of 2207.7  cM 
and 1887 bins/6444 SNP markers was constructed for the 
BnaZN-RIL population, which covered 812.1 Mb physi-
cal distance representing 84.5% of the assembled genome 
of Zhongshuang11 (Fig.  3; Table  2). It should be noted 
that the recombination frequencies (2.92 to 5.93) of the 
10 linkage groups in the A subgenome were all higher 
than those (1.95 to 2.75) for the 9 linkage groups in the C 
subgenome, with a mean of 2.72 per Mb.

Notably, 298 bins (15.8%) displayed extremely sig-
nificant segregation distortion, which tended to cluster 
especially at the end of linkage groups (Fig.  3; Table  2). 
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Interestingly, dozens of markers were found to have high 
residual heterozygosity (ranging from 25.6 to 60.2%) in 
the BnaZN-RIL linkage map, most of which were con-
centrated at the ends of A01, A03, C01, and C02. Further 

single marker analysis showed that many of these mark-
ers in linkage groups A03 and C02 displayed an overdom-
inant effect on pod number, the most important principal 
component of seed yield (Additional file 12: Table S5).

Fig. 2  Trait relationship revealed by trait network and PCA analysis of 21 traits investigated in the BnaZN-RIL population. A: Trait network 
constructed by the 149 trait pairs showing significant correlation in at least half of the investigated environments. The seed yield and its 
components and related traits are shown in different colors. The traits are treated as nodes, which are linked with liens of different types (solid: + ; 
dotted: -) and widths (distinguishing the degree). B–D: Loading of PC1 vs PC2, PC1 vs PC3, and PC2 vs PC3. The different traits are represented by 
dots of different colors as demonstrated in the legends. Circle A, B, and C represent the different groups
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The constructed BnaZN-RIL genetic linkage map aligned 
well with the genomic map of Zhongshuang11 (Fig.  4), 
demonstrating its high quality. Generally, the genetic dis-
tance increased with physical distance, with a more rapid 
increase at both ends of the chromosomes than in the mid-
dle part, showing an S-shaped curve. There were obvious 
breakpoints (no markers in a large genome segment) in 
the alignment map, basically corresponding to the centro-
meric region. Interestingly, no SNP marker was located in 
the centromeric region, and markers flanking centromeric 
regions were basically monomorphic (Additional file  13: 
Table  S6). The recombination frequencies in pericentro-
meric regions ranged from 0.02 (A05) to 1.04 (A02) with 
a mean of 0.28 per Mb, which was much lower than the 

corresponding mean (2.72 per Mb) calculated from the 
whole genome.

Analysis of genetic relationships revealed an integrated 
trait‑QTL network with hub‑QTL to control yield
To further dissect the genetic determination of yield, 
large-scale QTL mapping was conducted using the above-
mentioned phenotypic data and high-density linkage map 
of the BnaZN-RIL population. At the significance level of 
P = 0.05, a total of 207 QTL were identified for the 21 traits 
investigated in six environments, which explained 4.0–
48.3% of the variance (Additional file 14: Table S7A). After 
the integration of overlapping identified QTL trait by trait 
in different environments, a total of 134 consensus QTL 
were obtained (Additional file  14: Table  S7B). Of these, 
19, 32, and 84 were for seed yield, yield component, and 
related traits, respectively.

Interestingly, the consensus QTL were clustered rather 
than randomly distributed across the genome (Fig.  5), 
which might explain the extensive correlation among 
these traits (Additional file 2: Figure S2). Then, 106 of the 
134 consensus QTL were combined into 28 QTL clusters 
(Additional file 14: Table S7C), which might be caused by 
pleiotropy or tight linkage. Among the 19 consensus QTL 
for seed yield, 16 overlapped with the QTL for other traits 
(Additional file 14: Table S7C), highly in accordance with 
the extensive correlation between yield and other investi-
gated traits (Additional file 2: Figure S2; Additional file 10: 
Table S3). Statistical analysis of the number/proportion and 
direction of these overlapping QTL revealed some obvi-
ous characteristics (Additional file 15: Table S8). First, the 
directions of these overlapping QTL between seed yield 
and other yield components or related traits were same 
rather than opposite. Second, the directions of almost 
all overlapping QTL of the five growth period traits were 
same, indicating that pleiotropy rather than tight linkage 
was more likely to be the underlying genetic basis.

It should be noted that four QTL clusters (QC4, QC8, 
QC14, QC17) contained many consensus QTL with large 
effects (Additional file 14: Table S7C), which might play an 
important role in regulating traits. Of the 14 QTL involved 
in QC4 at the top of chromosome A2, eight showed repro-
ducible and large effects, including three growth period 
traits (+ , 25.4–48.3%), seed yield (+ , 10.9%), PN (+ , 
23.3%), PBN (+ , 13.0%), protein (−, 18.8%) and oil con-
tent (+ , 11.1%). QC8 on the lower part of chromosome 

Table 1  Principal component analysis of the 21 traits based 
on the BLUE (best linear unbiased estimation) value in six 
environments

Trait name (abbreviation) PC1 PC2 PC3

Bolting time (BoT) 0.312 0.223 0.172

Budding time (BuT) 0.334 0.208 0.242

Flowering ending time (FET) 0.315 0.238 0.238

Flowering time (FlT) 0.323 0.168 0.222

Maturity time (MaT) 0.265 0.209 0.157

Main inflorescence length (MIL) − 0.048 0.065 − 0.195

Oil content of seeds (OIL) 0.014 − 0.318 − 0.011

Primary branch height (PBH) 0.166 − 0.244 0.054

Primary branch number (PBN) − 0.181 0.122 0.355

Pod density (PD) 0.013 0.075 0.018

Plant height (PH) 0.013 − 0.132 0.139

Pod length (PL) 0.256 − 0.220 − 0.092

Pod number of branches (PNb) − 0.348 0.232 0.201

Pod number of main raceme (PNm) − 0.013 0.106 − 0.108

Pod number of whole plant (PNw) − 0.326 0.238 0.181

Protein content of seeds (PRO) 0.082 0.323 − 0.156

Seed number per pod (SNPP) 0.112 − 0.349 0.302

Seed yield of branches (SYb) − 0.265 − 0.065 0.367

Seed yield of main raceme (SYm) 0.209 − 0.355 0.129

Seed yield of whole plant (SYw) − 0.141 − 0.223 0.399

Thousand seed weight (TSW) 0.084 0.012 − 0.273

Eigenvalue 5.082 3.423 3.145

Proportion of variance 0.242 0.163 0.150

Cumulative proportion 0.242 0.405 0.555

(See figure on next page.)
Fig. 3  Genetic linkage map constructed using the BnaZN-RIL population. The names of each of the 19 linkage groups are shown on the top and 
the black oval indicates the positions of the centromere. The serial numbers of mapped bins and their genetic distances are shown on the left and 
right sides of each linkage group, respectively. The names of bin markers with high heterozygosity and segregation distortion are highlighted using 
italics and color, of which red and green distinguish the skew from Zhongshuang11 and No.73290, respectively
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Fig. 3  (See legend on previous page.)
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Fig. 4  Alignment of the genetic map of the BnaZN-RIL population and the genomic map of Zhongshuang11. The horizontal and vertical axes show 
the genetic distances (cM) and physical positions (Mb), respectively. The scatter dots indicate the genetic positions of the mapped SNP markers 
on the genetic map of the BnaZN-RIL population and their physical positions on the pseudochromosomes (A01-A10; C01-C09) of the reference 
genome Zhongshuang11. The determination coefficients of the genetic and physical distances of these SNP markers are also shown on each chart
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Fig. 5  Distribution of consensus QTL in the Zhongshuang11 genome. The 19 chromosomes are drawn as cylinders, with their names (A01-A10 and 
C01-C09) shown on the top. The positions of each QTL are indicated by thin horizontal lines
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A06 showed reproducible and large effects on SNPP (+ , 
25.4%), PN (−, 17.7%), and pod length (PL) (+ , 8.8%), but 
a moderate effect on other traits including seed weight (−, 
9.9%), pod density (PD) (−, 9.1%), FIT (−, 6.5%), and plant 
height (PH) (−, 12.4%). QC14 on the lower part of chromo-
some A09 showed reproducible and large effects on PL (+ , 
18.8%) and seed weight (+ , 11.9%), and moderate effects 
on six other traits including PN (−, 8.2%), FIT (−, 4.1%), 
MaT (−, 13.5%), main stem length (MIL)(−, 7.0%), and pri-
mary branch height (PBH) (−, 11.0%). QC17 on the bot-
tom of chromosome C02 had producible and large effects 
on growth period traits (−, 7.0%−16.4%), with a moderate 
effect on seed yield (−, 8.3%), PBN (−, 6.0%), and protein 
content (−, 6.4%).

To further link the phenotypic and genetic relationship 
between yield and its components or related traits, an 
integrated trait–QTL network was constructed (Fig.  6), 
which displayed several obvious features. Firstly, all 134 
consensus QTL for the 21 traits were integrated into an 
interconnected network, none of which was independ-
ent. This indicated the extensive relationships between 
these traits, which might be caused by the multiple/pleio-
tropic roles of the underlying QTL. Secondly, there were 
several obvious hub-QTL that were linked with multi-
ple traits and displayed large effects, which might play a 
major role in the trait–QTL network and are worthy of 
further study. Thirdly, most of these hub-QTL clusters 
had smaller effects on seed yield than their components 
or related traits, which indicated their pleiotropy and 
indirect effects on yield.

Further dissection of four representative hub‑QTL revealed 
the causal trait relationship and underlying target 
or candidate genes in yield determination
To further dissect the complex trait relationship within 
yield determination at molecular level, four representa-
tive hub-QTL were selected to construct high-generation 
near isogenic lines (NILs) (Additional file  3: Figure S3) 
for accurate evaluation of their phenotypic effects and 
trait relationships as well as fine-mapping and identifica-
tion of underlying genes.

BnaA2.FLC indirectly affected yield through influencing 
three yield components via regulating the growth period
QC4 was narrowed to a 71-kb region between SNP 
markers seq-new-rs24859 (A02: 1,971 kb) and seq-new-
rs32262 (A02: 2,043  kb). Relative to Zhongshuang11 
(Table 3), the homologous NIL_QC4 showed the largest 
decrease in BoT (−  26.1%), followed by BuT, SYb, PNb, 
SYw, PBH, PNw, and PBN (from −  19.8 to −  14.2%), 
while SYm, PNm, FlT, PH, and PD showed a moderate 
reduction (from −  12.0 to −  8.9%), whereas the other 
eight traits showed only small change (from −  5.0 to 

6.2%). These results were generally consistent with their 
effects on these traits in the preliminary mapping popula-
tion of BnaZN-RIL (Additional file 14: Table S7C), such 
as the largest effect on several growth period traits. Fur-
ther conditional QTL analysis using the NIL segregation 
population demonstrated a complex up-/down-stream 
and positive/negative regulation between these traits 
(Fig.  7A), i.e., QC4 had a large and direct effect on the 
growth period, which then had indirect and pleiotropic 
effects on PH ( +), PBN ( +), PN ( +), SNPP ( +), seed 
weight (−), and the final seed yield ( +). This was under-
standable because longer vegetative growth generally 
produces more leaves and biomass, therefore positively 
correlating with branch and pod number [35]. In the 
semi-winter growing area of China, oilseed rape cultivars 
with late maturity often encounter high-temperature rip-
ening, leading to the decreased seed weight due to inad-
equate seed filling [36].

The fine-mapped region of QC4 contained only 17 
annotated genes in the reference genome of Zhongsh-
uang11 (Table  S9), only BnaA02G0035100ZS(BnaA2.
FLC) was homologous to the known flowering time 
gene FLC (AT5G10140) in Arabidopsis. BnaA2.FLC had 
been previously identified to be the causal [37] or can-
didate [38] gene for flowering time major QTL in the 
same genomic region of chromosome A2. In addition, 
RNA sequencing of the shoot apical meristem at the 
initial stage of floral bud differentiation showed that the 
expression of BnaA2.FLC was much higher (56.8-fold) 
in Zhongshuang11 than in No.73290 (Additional file 17: 
Table S10), which was highly in accordance with the posi-
tive additive-effect direction of QC4 on growth period 
traits (Additional file  14: Table  S7). Further sequence 
analysis showed that there was a 10-bp insertion in the 
core 40-bp motif of the promoter in No.73290 (Addi-
tional file 4: Figure S4), which might decrease its expres-
sion. These results highly supported that BnaA2.FLC was 
the target gene of QC4.

QC8 directly affected yield by regulating seed number 
per pod likely through the embryogenesis gene BnaA6.
EMB93
QC8 had previously been fine-mapped to a 267-kb region 
between SSR markers BrSF47-10 and BrSF46-167, using 
the BC4F2 population and its recombinant progeny [39]. 
However, no recombinant was found in a small genomic 
fragment of 103  kb between SSR markers BrSF46-28 
and BrSF46-78, even in a very large BC5F2 population of 
37,976 plants [40]. Relative to Zhongshuang11 (Table 3), 
the homologous NIL_QC8 showed the largest decrease 
in SNPP (−  23.8%), followed by SYb (−  13.4%), SYw 
(− 12.8%), and SYm (− 11.6%), while TSW (+ 8.4%), PL 
(− 7.3%), PNm (+ 6.9%), PNw (+ 5.7%), and PNb (+ 5.1%) 
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showed moderate change, and the differences of other 12 
traits were not significant. These results were also highly 
consistent with their effects on these traits in the pre-
liminary mapping population of BnaZN-RIL (Additional 
file  14: Table  S7C), such as the largest effect on seed 

number per pod. Conditional QTL analysis using the NIL 
segregation population also revealed the causal relation-
ships between these traits (Fig. 7B), where QC8 showed 
a direct and large effect on seed number per pod, which 
then had indirect and pleiotropic effects on PL ( +), PN 

Fig. 6  Trait–QTL network constructed for all of the investigated traits and the underlying consensus QTL. Traits and consensus QTL are treated 
as nodes, which are drawn using the hexagon and circle, respectively. The seed yield, yield components and yield-related traits are distinguished 
by the different colors. The additive-effect direction of these consensus QTL is distinguished by the lines of different endpoint types (+ : arrow; -: 
vertical line). The abbreviations of trait names are the same as those in Table 1, and the width of the lines indicates the R2 of the consensus QTL
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Table 3  Phenotypic evaluation of the recurrent parent Zhongshuang11 and corresponding NILs for four representative hub-QTL 
clusters

The abbreviations of the trait names are the same as those in Table 1

Trait Zhongshuang11 NIL_QC4 NIL_QC8 NIL_QC14 NIL_QC17

SYw 17.3 ± 1.71 14.5 ± 1.45 15.1 ± 1.57 14.2 ± 1.31 19.1 ± 1.83

SYb 11.28 ± 1.04 9.23 ± 0.8 9.77 ± 0.86 9.41 ± 0.81 12.7 ± 1.13

SYm 6.01 ± 0.51 5.29 ± 0.51 5.31 ± 0.48 4.83 ± 0.46 6.36 ± 0.57

PNw 210 ± 19.7 180 ± 18.1 222 ± 21.7 216 ± 20.1 237 ± 22.1

PNb 142 ± 15 119 ± 13.2 149 ± 15.8 147 ± 15.6 163 ± 16.1

PNm 68.5 ± 6.42 61.4 ± 5.73 73.2 ± 7.3 69.3 ± 6.81 74.4 ± 7.43

SNPP 21.1 ± 0.91 20.0 ± 0.88 16.1 ± 0.84 20.7 ± 0.9 22.1 ± 0.93

TSW 4.16 ± 0.19 4.29 ± 0.2 4.51 ± 0.21 3.37 ± 0.17 3.87 ± 0.18

BoT 128 ± 1.54 94.7 ± 0.71 128 ± 1 128 ± 1 148 ± 2.12

BuT 146 ± 2.24 117 ± 1.71 146 ± 2 146 ± 2 165 ± 2.66

FlT 165 ± 1.24 149 ± 0.71 166 ± 1.41 165 ± 1.15 177 ± 2.12

FET 187 ± 1.24 180 ± 0.71 188 ± 1 187 ± 1.41 192 ± 1.83

MaT 219 ± 0.71 215 ± 1 219 ± 0.86 218 ± 1 221 ± 0.93

PH 176 ± 9.92 159 ± 8.44 177 ± 10.05 175 ± 9.31 182 ± 10.15

PBH 86.7 ± 6.73 73.8 ± 5.22 87.8 ± 8 85.6 ± 6.59 90.0 ± 8.18

PBN 5.13 ± 0.64 4.40 ± 0.51 5.36 ± 0.71 4.98 ± 0.63 5.59 ± 0.76

MIL 57.1 ± 4.42 56.2 ± 4.19 58.3 ± 4.71 58.12 ± 4.54 58.9 ± 4.84

PD 1.20 ± 0.13 1.09 ± 0.1 1.26 ± 0.15 1.19 ± 0.11 1.26 ± 0.17

PL 86.7 ± 5.41 83.2 ± 4.96 80.4 ± 4.46 64.1 ± 3.26 89.0 ± 5.42

OIL 48.3 ± 2.48 47.7 ± 2.13 48.1 ± 2.3 48.6 ± 2.64 48.7 ± 2.84

PRO 17.8 ± 1.48 18.9 ± 1.89 18 ± 1.66 17.4 ± 1.34 17.1 ± 1.19

Fig. 7  Further dissection of four representative hub-QTL clusters (A–D: QC4, QC8, QC14, QC17). The up-/downstream and positive/negative 
feedback relationships between the relevant traits were linked with lines of different widths and types, which indicate the size and direction 
(positive: arrow; negative: vertical line) of the effect, respectively
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(−), and seed weight (−). These results were highly con-
sistent with the previous finding that the change in seed 
number per pod is usually accompanied by a change in 
fruit length in the same direction (but the reverse is not 
true), indicating positive feedback between seed setting 
and fruit growth [41]. In addition, the opposite pleiot-
ropy between SNPP and pod number/seed weight could 
be explained by the competition among sink organs due 
to limited resources, which resulted in trade-off/nega-
tive feedback between them [39]. However, the moderate 
negative effects of QC8 on pod number and seed weight 
could not counteract its large positive effect on seed 
number per pod. It also had a considerable positive effect 
on the final seed yield.

Among the 19 genes annotated in the 103-kb region 
of QC8 (Additional file  16: Table  S9), only BnaA-
06G0400200ZS’s homologue (EMB93/AT2G03050) is 
involved in known biological processes (such as ovule 
differentiation and development, fertilization and seed 
development) related to seed number in Arabidopsis. The 
EMB93 gene encodes a mitochondrial transcription ter-
mination factor that is involved in embryogenesis, whose 
mutation results in embryo lethality (https://​www.​arabi​
dopsis.​org/​servl​ets/​TairO​bject?​id=​34053​&​type=​locus). 
There were 18 SNPs between the coding sequences of 
BnaA6.EMB93 in Zhongshuang11 and No.73290, only 
one of them caused amino acid variation that was not 
in the functional domains (Additional file  5: Figure S5). 
However, there was an ≈11 kb insertion in the upstream 
regulatory region of BnaA6.EMB93 in No.73290 but not 
in Zhongshuang11, which was highly consistent with its 
decreased expression in the ovules of different stages in 
NIL_QC8 (Additional file  6: Figure S6). These results 
suggested that BnaA6.EMB93 was the most likely candi-
date gene of QC18.

The cytochrome p450 gene BnaA9.CYP78A9 indirectly 
affected yield through influencing seed weight 
via regulating pod length and photosynthetic area.
QC14 was successfully delimited to a 90-kb region 
between SNP markers Bn-A09-p30171993 (A09: 
57,344  kb) and Bn-A09-p30260475 (A09: 57,435  kb). 
Compared to the recurrent parent Zhongshuang11, the 
homologous NIL_QC14 showed the largest decrease 
in PL (−  26.1%), followed by SYm (−  19.6%), TSW 
(−  19.0%), SYw (−  17.6%), and SYb (−  16.6%), whereas 
the other two yield components and 14 yield-related 
traits exhibited no significant difference (Table  3). The 
effects of QC14 in high-generation NILs were highly 
similar to those in the preliminary mapping population of 
BnaZN-RIL (Additional file 14: Table S7C), where it had 
a stable and large effect on pod length, followed by seed 

weight. Conditional QTL analysis further revealed the 
causal relationship between these traits (Fig. 7C), where 
QC14 had a direct effect on pod length, thus had indirect 
pleiotropic effects on seed weight ( +), and final yield ( +). 
This is understandable as longer pod generally means a 
larger photosynthetic area that is able to produce more 
assimilates for seed filling [34], which essentially reflects 
the positive feedback between the source and sink.

Among the 13 genes annotated in the 90-kb region 
of QC14 (Additional file  16: Table  S9), only BnaA-
09G0560100ZS’s homologue (CYP78A9/AT3G61880) is 
involved in regulating silique and seed development in 
Arabidopsis (https://​www.​arabi​dopsis.​org/​servl​ets/​TairO​
bject?​id=​36508​&​type=​locus). In addition, the expres-
sion level of BnaA09G0560100ZS showed a large differ-
ence (fold-change = 24.0 and 3.3; P-value = 1.2E−13 and 
8.7E−3) between Zhongshuang11 and NIL_QC14 in 
both pod walls and seeds (Additional file  6: Figure S6). 
Although the coding sequence of BnaA09G0560100ZS 
had no difference between Zhongshuang11 and NIL_
QC14, a CACTA-like transposable element was present 
in its upstream regulatory region in Zhongshuang11, but 
absent in NIL_QC14 (Additional file 7: Figure S7). A very 
recent study showed that this CACTA-like transposable 
element in the upstream region of BnaA9.CYP78A9 acted 
as an enhancer to increase its expression, which was 
responsible for a major QTL-qSLW.A9 for silique length 
and seed weight in rapeseed [42]. All of the above results 
strongly supported that BnaA9.CYP78A9 was the target 
gene of QC14.

QC17 indirectly affected yield by influencing three yield 
components likely through the growth period gene BnaC2.
MAF2
QC17 was narrowed to a 744 kb genomic region between 
two SNP markers Bn-scaff_16139_1-p1393867 and 
seq-new-rs22829. Compared to the recurrent parent 
Zhongshuang11 (Table  3), the homologous NIL_QC17 
showed the largest increase on BoT (+ 15.5%) and PNb 
(+ 15.1%), followed by PNw (+ 13.0%), BuT (+ 12.8%), 
SYb (+ 12.6%), SYw (+ 10.2%), PBN (+ 9.0%), and PNm 
(+ 8.6%), and moderate changes in FlT (+ 7.2%), TSW 
(− 7.0%), SYm (+ 5.9%), PD (+ 5.3%), and SNPP (+ 4.7%). 
The effects of QC17 on these traits were similar to those 
in the preliminary mapping population of BnaZN-RIL 
(Additional file  14: Table  S7), where it had stable and 
large effects on growth period traits. The integration with 
conditional QTL results demonstrated the causal rela-
tionship between traits controlled by QC17 (Fig.  7D), 
where it had a direct and large effect on the growth 
period, which then had indirect and pleiotropic effects on 

https://www.arabidopsis.org/servlets/TairObject?id=34053&type=locus
https://www.arabidopsis.org/servlets/TairObject?id=34053&type=locus
https://www.arabidopsis.org/servlets/TairObject?id=36508&type=locus
https://www.arabidopsis.org/servlets/TairObject?id=36508&type=locus
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PBN ( +), PN ( +), SNPP ( +), seed weight (−), and the 
final yield ( +).

The detailed analysis of the 101 genes anno-
tated in the 744  kb region of QC17 revealed seven 
genes (BnaC02G0541300ZS, BnaC02G0542400ZS, 
BnaC02G0542800ZS, BnaC02G0545600ZS, 
BnaC02T0546100ZS, BnaC02T0546200ZS, 
and  BnaC02T0546300ZS) that are homologous to the 
known genes (LNK, MTL1, EIP9, MAF2, and MAF4) con-
trolling flowering time in Arabidopsis (Additional file 16: 
Table S9). Notably, all seven genes showed no expression 
or very low expression levels except for BnaC2.MAF2 
(Additional file 17: Table S10), which was the most likely 
candidate gene of QC17.

Conclusions
In the current study, yield was systematically dissected at 
the phenotypic, genetic, and molecular levels using oil-
seed rape as an example. At the phenotypic level, analy-
sis of 21 traits in a representative recombinant inbred 
line (RIL) population showed that yield was determined 
by a complex trait network with key contributors. At the 
genetic level, large-scale mapping and analysis of QTL 
showed that yield was controlled by an integrated QTL 
network with obvious hub-QTL that regulated multi-
ple traits with large effects. At the molecular level, four 
representative hub-QTL were further fine-mapped, the 
causal relationships between the relevant traits were 
revealed, and the target or candidate genes were also 
identified. The highly consistent results at the pheno-
typic, genetic, and molecular dissecting provided a sys-
tematic view and further insight into the determination 
of yield in crops.

Discussion
Yield was determined by a complex trait network with key 
contributors
In the current study, there were several important find-
ings in dissecting the phenotypic relationship between 
yield and its components or related traits by using the 
different analysis methods. Additionally, the constructed 
trait network exhibited an obvious center-periphery 
structure, where seed yield was located at the center, fol-
lowed by yield components and related traits (Fig.  2A). 
This suggested that yield-related traits could indirectly 
affect yield by influencing yield components, which was 
highly supported by the results of further dissection 
of four representative hub-QTL. Among them, QC 8 
directly affected yield, whereas QC4, QC14, and QC17 
indirectly influenced yield. Further principal component 
analysis revealed several key traits (mainly represented 
by three yield components) as well as their influencing 
factors in determining yield. For example, seed yield was 

mainly determined by pod number and branch number, 
which were largely influenced by growth period, which 
was also highly supported by the results of further dissec-
tion of QC4 and QC17 (Fig.  7A, D). These results were 
highly accordant with population-level studies showing 
that the high yield of oilseed rape mainly depended on 
more branch number and pod number, followed by more 
and larger seeds [35, 43, 44].

Analysis of an integrated genetic and physical map 
provided insight into evolution and heterosis
The in-depth analysis of the integrated genetic and physi-
cal map resulted in several novel/interesting findings, 
which had great significance for genetics and breeding. 
To our knowledge, this is the first report that has cal-
culated the recombination frequency in centromeric 
regions and compared with other regions in Brassica, 
although the genome-wide recombination frequency has 
been estimated [45]. The higher recombination frequen-
cies of chromosomes A1 to A10 than C1 to C9 (Table 2) 
might be attributed to the lower proportion of repetitive 
sequences in the A subgenome than in the C subgenome 
[46, 47]. The probability of segregation distortion showed 
a gradual downward trend from the peak marker with the 
most significant Chi-square value (Pχ

2), which might be 
closely linked with the segregation distortion loci [48]. 
Interestingly, all three major QTL clusters of the growth 
period were distorted to alleles with early growth/devel-
opment (Fig. 3; Additional file 14: Table S7), which might 
be subjected to selection during the development of the 
BnaZN-RIL population. This result strongly suggested 
that selection via a genetic hitchhiking effect had an 
important role in the generation of segregation distor-
tion in this population [49]. The higher proportion of 
distorted markers in the current BnaZN-RIL popula-
tion than in the previously reported BnaZN-F2 popula-
tion [45] derived from the same parents could be largely 
due to more generations of selection in the RIL popula-
tion than in the F2 population [50]. Unexpectedly, several 
regions with high (even > 50%) residual heterozygosity 
were found in the BnaZN-RIL population that had been 
self-crossed for seven generations (theoretical heterozy-
gosity was only 1.56%). Interestingly, the markers with 
high heterozygosity tend to cluster at the end of linkage 
groups (Fig.  3), and the heterozygotes in these regions 
usually perform better than the corresponding homozy-
gotes (Additional file 12: Table S5), which has great sig-
nificance for evolution and heterosis [51].

Yield was controlled by an integrated trait‑QTL network 
with obvious hub‑QTL
The integrated high-quality genetic and physical map 
provided an ideal platform to accurately dissect the 
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genetic relationship between yield and its components or 
related traits. The most significant characteristics regard-
ing these QTL were their clustered distribution (Fig.  5) 
and high-proportion (> 80%) of overlap (Additional 
file 15: Table S8), which were highly consistent with the 
extensive correlation between these traits (Additional 
file 3: Figure S3). The extensive trait correlation and QTL 
overlap in the current study were further supported by an 
integrated trait-QTL network that involved all of the 134 
consensus QTL for 21 traits (Fig.  6). This strongly indi-
cated the complexity of the genetic improvement of com-
posite traits such as yield [1]. Generally, the overlapping 
QTL clusters/hotspots of yield [18–20, 29, 52–54] usu-
ally include several other QTL for yield components and/
or related traits. Therefore, the overlapping QTL cluster 
for yield can be caused by the pleiotropic effects of a spe-
cific gene or the combined effects of several tightly linked 
genes, since a detected QTL in preliminary mapping may 
be dissected into several sub-QTL after further fine-map-
ping [24, 55, 56]. It is speculated that some of the seed 
yield QTL could not be detected due to the cancella-
tion of opposite effects of several tightly linked QTL for 
the same or different yield components or related traits. 
Relative to yield components or related traits with higher 
heritability, yield QTL were generally unrepeatable and 
showed smaller effects, which made it difficult to directly 
clone and utilize them. The integrated trait-QTL network 
showed obvious hub-QTL clusters that linked multiple 
traits and displayed large effects, which played a major 
role in trait relations and were likely to be the targets for 
cloning.

Hub‑QTL dissection provided causal explanations for yield 
formation and determination
Through the further dissection of four representative 
hub-QTL clusters using high-generation NILs, the quali-
tative (up/down-stream and positive/negative regula-
tion) and quantitative (effect size) relationships between 
the relevant yield traits were revealed (Fig.  7). To our 
knowledge, this should be the exact roadmap of yield 
determination at the single locus/gene level, which pro-
vided a further causal explanation for yield formation. 
First, there were two main pathways for yield formation, 
including direct determination by yield components such 
as seed number per pod (QC8) and indirect determina-
tion by yield-related traits, such as growth period (QC4 
and QC17) and source size (QC14). Second, if a yield 
QTL was directly caused by the genes of a specific yield 
component, it generally had negative pleiotropy on other 
yield components. Highly consistent with this, none 
of the cloned genes for yield QTL can simultaneously 
improve all yield components [42, 57–67]. This univer-
sal rule can explain the common phenomenon for QTL 

clusters of yield traits in which their effects on yield are 
usually smaller than those on yield components. How-
ever, the size of the effect was related to the determina-
tion period/developmental order of these traits (i.e., pod 
number sooner than seed number per pod sooner than 
seed weight), the traits determined earlier usually have 
large influence on those determined later but not vice 
versa. Taking QC8 as an example, the change in seed 
number per pod usually causes a large change in seed 
weight but only a small change in pod number. In addi-
tion, the trait relationships reflected by the four major 
hub-QTL clusters demonstrated that the yield variation 
in the BnaZN-RIL population should be mainly attribut-
able to the difference in source (QC4/QC17 and QC14 
affect biomass accumulation and pod area, respectively) 
and sink (QC8 controls ovule fertility and seed number 
per pod). The results of further dissection at the molec-
ular level were also highly consistent with those at the 
genetic and phenotypic levels (e.g., pleiotropy of BnaA9.
CYP78A9 → QTL cluster 14 → correlation between pod 
length and seed weight), which provided a systematic and 
deep understanding of yield determination.

Experimental procedures
Population development
The BnaZN-RIL population was developed by single-
seed descent from the previously reported BnaZN-F2 
population that was derived from Zhongshuang11 and 
No.73290 [45]. For the development of the near-isogenic 
line, the F1 hybrid (Zhongshuang11 × No.73290) was 
crossed with Zhongshuang11 for 12 generations. For each 
generation, BCnF1 plants heterozygous at the target QTL 
were screened (using flanking SSR/InDel markers) for 
each consecutive backcross. For the final BC12F1 genera-
tion, the heterozygous plants were also screened by back-
ground selection (using Brassica 60 K Illumina® Infinium 
SNP array), of which those with the highest background 
recovery rate (99.6%, 99.7%, 99.8%, and 99.5% for QC4, 
QC8, QC14, and QC17, respectively) were self-crossed to 
produce BC12F2 seeds.

Field experiments
Both the BnaZN-RIL population and its parents were 
planted in six environments, including four years at 
Wuhan (codes W12, W13, W14, and W16) and two 
years at Zhengzhou (codes Z13 and Z14). To accurately 
evaluate the phenotypic effect of four hub-QTL clus-
ters, Zhongshuang11 and the corresponding NILs were 
planted and investigated at Wuhan in 2019. The field 
planting followed a randomized complete block design 
with three (BnaZN-RIL population) or ten (NILs) replica-
tions, respectively. Each block contained three (BnaZN-
RIL population) or five (NILs) rows, respectively, with 
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33-cm spacing and 18 plants were evenly retained after 
singling. At maturity, 10 (BnaZN-RIL population) or 30 
(NILs) representative individuals in the middle of each 
block (except for two rows on the side) were harvested 
from each block.

Trait investigation
A total of 21 traits were investigated and divided into five 
types: seed yield, yield components, growth period, plant 
architecture and seed constituent. Pod number (PN), 
seed number per pod (SNPP), pod length (PL),thousand-
seed weight (TSW), flowering time (FlT), and plant 
height (PH) were measured as described in our previous 
studies [40, 45, 68, 69]. The main inflorescence length 
(MIL), primary branch number (PBN), primary branch 
height (PBH), pod density (PD), bolting time (BoT), bud-
ding time (BuT), flowering end time (FET), maturity time 
(MaT), seed oil content (OIL), and seed protein con-
tent (PRO) were measured as described in other studies 
[70–72].

Genotypic analyses and genetic linkage map construction
The BnaZN-RIL population of 171 lines was genotyped 
using the Illumina Infinium 60 K SNP chip, which con-
tains 52,157 SNP markers [73]. Of the 17,286 polymor-
phic markers, 5405 showed a heterozygous or absent 
genotype in the parents and were removed from further 
analysis. Finally, a total of 11,881 high-quality and poly-
morphic SNP markers were obtained, which were then 
merged into 4993 co-segregated bins. Genetic linkage 
mapping was carried out using JoinMap 4.0 software 
[74] for each of the 19 linkage groups, with the follow-
ing parameters: goodness of fit was set to ≤ 5.0 with LOD 
scores > 1.0 and a recombination frequency < 0.4.

QTL detection and integration
The conditional phenotype value y(T1|T2) was obtained 
by the mixed model approach for conditional analysis of 
quantitative traits using QGAStation1.0 (http://​ibi.​zju.​
edu.​cn/​softw​are/​qga/​index.​htm), where T1|T2 indicated 
that trait 1 was conditioned by trait 2. Conditional and 
unconditional QTL mapping was performed using the 
composite interval mapping procedure [75] incorpo-
rated in Windows QTL Cartographer 2.5 software. The 
walk speed, number of control markers, window size and 
regression method were set to 1  cM, 5, 10  cM and for-
ward regression, respectively. The experiment-wise LOD 
threshold was determined by permutation test [76] with 
1000 repetitions.

The identified QTL of the same trait detected in differ-
ent environments were integrated into consensus QTL 
according to the previous report [68]. These consensus 

QTL were further combined into QTL clusters if their 
confidence intervals overlapped.

Construction of trait–QTL network
With slight modification from the previous report [77], 
traits and QTL were treated as nodes, which were con-
nected by edges using Cytoscape version 3.7.2 software 
[78]. The QTL were renamed as the chromosome name 
followed by their positions. If QTL of different traits 
were integrated into a cluster, it would represent QTL 
that affect multiple traits. Yield, yield components and 
yield-related traits are plotted in orange, blue, and green, 
respectively.

qRT‑PCR and RNA‑seq
Total RNA was isolated using the RNeasy Plant Mini 
Kit (Qiagen). The cDNA was synthesized using the First 
Strand cDNA Synthesis Kit (Takara). Using the gene-
specific primers (Table  S11), quantitative reverse-tran-
scription PCR (qRT-PCR) was performed using SYBR® 
Select Master Mix (2X) according to the manufactur-
ers’ recommendations. The β-Actin gene was used as an 
internal control to normalize transcript levels in both B. 
napus and A. thaliana [34]. The relative expression level 
was calculated using the 2–ΔΔCt method.

RNA-seq was also performed for comparison of gene 
expression at the transcriptome level. The fragments per 
kilobase per million reads (FPKM) was used to calculate 
gene expression levels. DEseq2 (http://​bioco​nduct​or.​org/​
packa​ges/​stats/​bioc/​DESeq2/) was used to perform gene 
differential expression analysis. The absolute values of 
log2 (ratio) ≥ 1 and FDR < 0.05 were chosen as thresholds 
to screen for DEGs.

Cloning of full‑length sequence of target genes
To verify the sequence variation of target genes in the 
two parents, their full-length sequences (including the 
coding region, 5ʹ upstream, and 3ʹ downstream) were 
amplified from the genomic DNA of Zhongshuang11 
and No.73290 by the KOD FX enzyme (cat: KFX-101). 
The PCR products with expected size were cloned into 
the pEASY®-T1 cloning vector (cat: CT101-01)and then 
sequenced by Beijing Tsingke Biotechnology Co., Ltd.

Statistical analysis
Variance, correlation and principal component analyses 
were performed using PROC GLM, CORR, and PRIN-
COMP procedures incorporated into SAS 9.2 software. 
Based on the estimated variance components, broad-
sense heritability was calculated according to the method 
described previously [1].

http://ibi.zju.edu.cn/software/qga/index.htm
http://ibi.zju.edu.cn/software/qga/index.htm
http://bioconductor.org/packages/stats/bioc/DESeq2/
http://bioconductor.org/packages/stats/bioc/DESeq2/
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Additional file 1: Figure S1. Frequency of distribution for each of the 21 
traits investigated in the BnaZN-RIL population planted in six environ‑
ments. The horizontal and vertical axes are divided with the same spacing, 
which shows the phenotypic value and line number, respectively. The 
columns of the different heights represent the number of lines in different 
groups. Different environments are distinguished by the different colors.

Additional file 2: Figure S2. Qualitative and quantitative presentation 
of phenotypic correlation among 21 traits investigated in the BnaZN-RIL 
population planted in six environments. The abbreviations of 21 traits are 
shown near both the horizontal and vertical axes. Below the diagonal, the 
significant correlations among these traits are indicated by circles of dif‑
ferent sizes; above the diagonal, the coefficients of significant correlations 
are shown. The direction and degree of correlation are distinguished by 
the different colors demonstrated in the legend.

Additional file 3: Figure S3. Development of high-generation near-
isogenic lines for the fine-mapping and evaluation of phenotypic effects. 
Hybrid F1 was alternatively backcrossed with Zhongshuang11 in Xining 
and Wuhan. In each generation, foreground selection was performed to 
choose heterozygous plants (at the target QTL region), which were used 
for consecutive backcrosses. Finally, the heterozygous BC12F1 NILs with 
the highest background recovery rate were self-obsessed to obtain BC12F2 
seeds, for the individual hub-QTL. The homologous BC12F2 NILs were 
subjected to phenotypic investigation and compared with the recurrent 
parent Zhongshuang11.

Additional file 4: Figure S4. Comparison of the promoter sequence 
of BnaA2.FLC between Zhongshuang11 and No.73290. (A) Alignment 
of the 2.9 kb sequence in the upstream regulatory region of BnaA2.FLC 
between Zhongshuang11 and No.73290. (B) Structural comparison of the 
2.9 sequence in the upstream regulatory region of BnaA2.FLC between 
Zhongshuang11 and No.73290. There were 12 SNPs and two InDels in the 
promoter region of BnaA2.FLC between Zhongshuang11 and No. 73290. 
Of these, the largest difference was a 10-bp InDel within the core 40-bp 
motif.

Additional file 5: Figure S5. Comparison of the BnaA6.EMB93 sequence 
between Zhongshuang11 and No.73290. (A) Alignment of the coding 
sequence of BnaA6.EMB93 between Zhongshuang11 and No.73290. 
Dark blue and no fill background represent the consensus and different 
sequences, respectively. There are a total of 17 SNPs between the two 
parents. (B) Alignment of the protein sequence of BnaA6.EMB93 between 
Zhongshuang11 and No.73290. Only amino acid 228 showed difference 
between the two parents, which is not within the functional domain of 
this protein. (C) Structural analysis of the transposon inserted into the 
promoter region of BnaA6.EMB93 in No.73290.

Additional file 6: Figure S6. Quantitative analysis of the expression of 
BnaA6.EMB93 and BnaA9.CYP78A9. (A) The relative expression level of 
BnaA6.EMB93 in the ovaries of Zhongshuang11 and NIL_QC8. The hori‑
zontal axis shows buds of different sizes (1-8 mm) before flowering and 
ovaries at different days after flowering (DAF). (B) The relative expression 

level of BnaA9.CYP78A9 in the ovaries of Zhongshuang11 and NIL_QC14. 
The horizontal axis shows pod walls at two weeks after flowering and 
seeds at four weeks after flowering. * P <0.05, ** P <0.01, *** P <0.001 
(t-test) indicate a significant difference between Zhongshuang11 and NIL. 
Each data is obtained from three biological replicates.

Additional file 7: Figure S7. Comparison of the full-length sequence 
of BnaA9.CYP78A9 between Zhongshuang11 and NIL_QC14. (A) The 
full-length genic structure of BnaA9.CYP78A9 in Zhongshuang11 and 
NIL_QC14. There was no difference in the coding sequence, but a 3.6-kb 
CACTA-like TE insertion into its upstream regulatory region in Zhong‑
shuang11. (B) The alignment of coding sequence of BnaA9.CYP78A9 in 
Zhongshuang11 and NIL_QC14.

Additional file 8: Table S1. Phenotypic variation of both parents and the 
BnaZN-RIL population in six environments.

Additional file 9: Table S2. Analysis of variance and estimation of herit‑
ability for the 21 traits investigated in the BnaZN-RIL population.

Additional file 10: Table S3. Summary statistics of the correlation among 
21 traits investigated in six environments.

Additional file 11: Table S4. Three principal components (PC1, PC2, and 
PC3) in the two locations and six environments.

Additional file 12: Table S5. Single marker analyses of the highly het‑
erozygous markers on 21 investigated traits.

Additional file 13: Table S6. Polymorphism of SNPs within the pericen‑
tromere region of the 19 chromosomes.

Additional file 14: Table S7. List of identified QTL (A), consensus QTL (B), 
and QTL clusters (C).

Additional file 15: Table S8. Statistical analysis of consensus QTL overlap‑
ping between pair-wise combinations among the 21 investigated traits.

Additional file 16: Table S9. The annotated genes in the fine-mapped 
genomic regions of four representative hub-QTL clusters.

Additional file 17: Table S10. The DEGs identified by RNA-seq of SAM in 
the initial stage of floral bud differentiation between Zhongshuang11 and 
No.73290.

Additional file 18: Table S11. List of primers used in this study, including 
fine-mapping, gene cloning, and qRT-PCR.
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